Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Cyber-security for Engine ECUs: Past, Present and Future

2015-09-01
2015-01-1998
In this paper, we outline past, present and future applications of automotive security for engine ECUs. Electronic immobilizers and anti-tuning countermeasures have been used for several years. Recently, OEMs and suppliers are facing more and more powerful attackers, and as a result, have introduced stronger countermeasures based on hardware security. Finally, with the advent of connected cars, it is expected that many things that currently require a physical connection will be done remotely in a near future. This includes remote diagnostics, reprogramming and engine calibration.
Magazine

Automotive Engineering: July 7, 2015

2015-07-07
To serve and protect As cars become more connected and automated, cybersecurity concerns are rising. Industry engineers have many tools and techniques and are now deploying encryption and standards to ensure that vehicle controls are not altered or usurped by unauthorized people.
Magazine

SAE Off-Highway Engineering: April 8, 2015

2015-04-08
Hydraulics still in control of off-highway needs Engineers continue to master electronic controllers and software to help systems manage engine speeds and boost efficiency, to the ultimate benefit of both OEMs and end-users. Off-highway calibration challenges-big and complex As the final set of Tier 4 regulations kick in for engines greater than 750 hp (560 kW), calibration efforts must contend with complex engine and aftertreatment systems. Engine manufacturers and service providers deal with this complexity, but does it need to be so? DEF delivery modelling for SCR systems Researchers characterize a 0-D model of a urea delivery module, oriented to model-based control and to the simulation of the system response to fault injections finalized to diagnosis validation.
Standard

Implementation Guide for Data Management

2014-07-01
WIP
GEIAHB859A
The federal government and industry have moved to concurrent acquisition and development processes using integrated process teams (IPTs). These processes are supported by timely, accurate, cross functional access to data within an integrated data environment (IDE) enabled by advances in information technology (IT). Since the advent of acquisition reform in 1994, Data Management (DM) practices have evolved from being directed by a prescriptive set of standards and procedures to use of the guidance in a principles-based standard -- ANSI/EIA 859.

GEIA Handbook 859 provides implementation guidance for ANSI/EIA 859, with discussions of applications of the standard's principles, tools, examples, and case studies. Handbook 859 is organized according to the lifecycle of data management and covers activities from the pre-RFP stage through records disposition.

Technical Paper

Securing Connected Vehicles End to End

2014-04-01
2014-01-0300
As vehicles become increasingly connected with the external world, they face a growing range of security vulnerabilities. Researchers, hobbyists, and hackers have compromised security keys used by vehicles' electronic control units (ECUs), modified ECU software, and hacked wireless transmissions from vehicle key fobs and tire monitoring sensors. Malware can infect vehicles through Internet connectivity, onboard diagnostic interfaces, devices tethered wirelessly or physically to the vehicle, malware-infected aftermarket devices or spare parts, and onboard Wi-Fi hotspot. Once vehicles are interconnected, compromised vehicles can also be used to attack the connected transportation system and other vehicles. Securing connected vehicles impose a range of unique new challenges. This paper describes some of these unique challenges and presents an end-to-end cloud-assisted connected vehicle security framework that can address these challenges.
Standard

Vendor Component Program Data File Interface for OEM Assembly Operations

2010-05-03
HISTORICAL
J2286_201005
This interface document SAE J2286 revises the requirements for file formats as were originally described in SAE J1924. This document describes Interface 1 (I/F 1) in SAE J2461. This document does not imply the use of a specific hardware interface, but may be used with other hardware interfaces such as SAE J1939, ISO 15765 or ISO 14229. The requirements of SAE J2286 supersede the requirements defined by SAE J1924.
Standard

COMMERCIAL AIRCRAFT INFORMATION SECURITY CONCEPTS OF OPERATION AND PROCESS FRAMEWORK

2005-12-20
CURRENT
ARINC811
The purpose of this document is to facilitate an understanding of aircraft information security and to develop aircraft information security operational concepts. This common understanding is important since a number of subcommittees and working groups within the aeronautical industry are considering aircraft information security. This document also provides an aircraft information security process framework relating to airline operational needs that, when implemented by an airline and its suppliers, will enable the safe and secure dispatch of the aircraft in a timely manner. This framework facilitates development of cost-effective aircraft information security and provides a common language for understanding security needs.
Standard

E/E Data Link Security

2005-06-27
HISTORICAL
J2186_200506
This SAE Recommended Practice establishes a uniform practice for protecting vehicle components from "unauthorized" access through a vehicle data link connector (DLC). The document defines a security system for motor vehicle and tool manufacturers. It will provide flexibility to tailor systems to the security needs of the vehicle manufacturer. The vehicle modules addressed are those that are capable of having solid state memory contents accessed or altered through the data link connector. Improper memory content alteration could potentially damage the electronics or other vehicle modules; risk the vehicle compliance to government legislated requirements; or risk the vehicle manufacturer's security interests. This document does not imply that other security measures are not required nor possible.
Technical Paper

EncryptionS Role in Vehicle Information Security

1998-10-19
98C044
A broad range of information is being delivered to and used within modern vehicles. Information-based applications are becoming more highly integrated into the automobile. Security services are necessary to provide appropriate protection for this information. Encryption, digital signature, and hash functionalities enable information security services such as confidentiality, authentication, integrity and non-repudiation. However, the consumer of in-vehicle information services will not accept security services that introduce any inconvenience to their activities. This paper will discuss various security service methods and security management systems and propose methods to integrate these services acceptably into vehicle-based applications.
Standard

VENDOR COMPONENT PROGRAM DATA FILE INTERFACE FOR OEM ASSEMBLY OPERATIONS

1997-02-01
HISTORICAL
J2286_199702
This interface document SAE J2286 revises the requirements for file formats as described in SAE J1924. This document describes Interface 1 (I/F 1) in SAE J2214. This document does not imply the use of a specific hardware interface, but may be used with other hardware interfaces such as SAE J1939. The requirements of SAE J2286 supersede the requirements defined by SAE J1924.
Standard

E/E DATA LINK SECURITY

1996-10-01
HISTORICAL
J2186_199610
This SAE Recommended Practice establishes a uniform practice for protecting vehicle components from "unauthorized" access through a vehicle data link connector (DLC). The document defines a security system for motor vehicle and tool manufacturers. It will provide flexibility to tailor systems to the security needs of the vehicle manufacturer. The vehicle modules addressed are those that are capable of having solid state memory contents accessed or altered through the data link connector. Improper memory content alteration could potentially damage the electronics or other vehicle modules; risk the vehicle compliance to government legislated requirements; or risk the vehicle manufacturer's security interests. This document does not imply that other security measures are not required nor possible.
Standard

EXPANDED DIAGNOSTIC PROTOCOL FOR OBD II SCAN TOOLS

1995-12-01
HISTORICAL
J2205_199512
This SAE Recommended Practice defines the Expanded Diagnostic Protocol (EDP), the requirements for the SAE J1978 OBD II Scan Tool for supporting the EDP protocol, and associated requirements for diagnosis and service information to be provided by motor vehicle manufacturers. Appendix A includes worked examples of the use of the protocol.
Standard

EXPANDED DIAGNOSTIC PROTOCOL FOR OBD II SCAN TOOLS

1994-06-01
HISTORICAL
J2205_199406
This SAE Recommended Practice defines the Expanded Diagnostic Protocol (EDP), the requirements for the SAE J1978 OBD II Scan Tool for supporting the EDP protocol, and associated requirements for diagnosis and service information to be provided by motor vehicle manufacturers. Appendix A includes worked examples of the use of the protocol.
Standard

NATIONAL AEROSPACE AND DEFENSE CONTRACTORS ACCREDITATION PROGRAM (NADCAP) REQUIREMENTS FOR ACCREDITATION OF PASS THROUGH DISTRIBUTORS

1993-06-24
HISTORICAL
AS7103
This aerospace standard outlines the minimum requirements for the quality assurance program of a distributor of new aircraft or aerospace parts and material. It is designed to aid in the surveillance and accreditation of a distributor who procures new parts and materials and resells these products to customers or other distributors in the aviation or aerospace industry, i.e., a PASS THROUGH distributor. This standard may be used to determine the adequacy and implementation of the distributor’s quality assurance program.
X